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Overview

• Motivation and Background

• What is a Collisionless Shock Wave?

• Features of the Collisionless Shock

• The Shock Simulation Model

• Simulation Results and Verification

• Future Work
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Background

• Grew up in Olympia, WA, The City of Champions

• B.S. Aerospace Engineering 2016 | UW, Seattle

• Start Graduate Program at UW Autumn 2016

• Hobbies:
– Studying classical guitar,

– Observing the sky,

– Appreciating existence and nature.

Who am I?
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  Investigation Motivation

• The 1D Collisionless Ion-Acoustic Shock Wave:
– Has a simple premise

– Is rich in nonlinear effects difficult for theoretical prediction,

• Wave Dispersion

• Wave-Particle Interaction

• Various Wave Dissipation Mechanisms

– Shock structure is an active area of research. In particular,

• Capacity to create ion beam of super-shock velocity.

• Validation of Simulation Frameworks
– The shock is a model problem for simulation code validation.

What's the Point?
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The Collisionless Shock Wave

• Propagation occurs via

collective electric interactions

• Shock front is dispersed across

many Debye lengths

• Wave is accompanied by an

electric field perturbation

• Two classes of shock:
– Subcritical: M < M* ~ 1.8

• Accompanied by
undulating wave-train

– Supercritical: M > M* ~ 1.8

• Increase in dissipation

• Reflects almost all ions

Ion Density

Density

Electrostatic Shock Features

Electron Density

Position

Shock Foot

Wave Train
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Details on Shock Structure

 Shock Thickness

– Ion-acoustic dispersion relation predicts the electron contribution to acoustic speed
to decay for wavelengths approaching the Debye length.

– Imagine shock formation: nonlinear steepening of an acoustic disturbance.

 Wave steepening is balanced by dispersion;

 short wavelength components recede from   
 the wavefront.

Dispersion Begins

 Linearized Ion-Acoustic Dispersion Relation
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Details on Shock Structure

   Wave Train Properties

– Linearized Model of Dispersive Shock, the Integrated Airy Function:

• Linearization of the fluid equations with piston-like boundary conditions gives a
solution for the shock behavior.

• Assumes cold upstream ions, therefore neglecting shock reflection.
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Details on Shock Structure

   Wave Train Properties

– Linear Model Predicts:

• The wave train spreads out in time; peak-to-peak wavelength increases.

• No variation of non-dimensional wavelength with electron temperature.

• The wave train increases in frequency towards the back of the train.
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Details on Shock Physics

   Sources of Collisionless Wave Dissipation

– Landau Damping:

● A form of wave-particle resonance. Resonant particles sap wave energy.

● Damping is proportional to slope of distribution function at wave velocity.

● Higher electron temperature means greater shock speed, so less damping.

– Ion Reflection / The Shock Foot:

• Higher shock strength brings a greater potential difference.

• Ions unable to traverse difference are reflected downstream.

• Formation of the shock foot dissipates wave energy.

Shock Foot

Wave Speed

Density

Distribution

Velocity
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Details on Shock Physics

 Phase Space Indicators of Wave Dissipation

Shock Foot

Wave-Trapped Ions

Velocity

Position

(Log View of Distribution)

DownstreamUpstream
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 Dissipation Controls Wave Train

 Under- and Over-damped Shocks

– Under-damped:

• Dissipation is weak, ripples persist.

• High

Density

Position

– Over-damped:

● Strong dissipation damps ripples.

● Low

Density

Position
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The Simulation Model

Simulation Procedure:

● Solve Poisson's equation for potential.

– VDF for ion density

– Electron density from

● Update the distribution function via
Vlasov equation.

● Repeat.

High Particle Density

Velocity

Thruster

Kinetic Model

Low Particle Density

Position

 Initial Conditions: Ion-Acoustic Shock Tube

 

Potential

Initial Condition

Vlasov Equation

Poisson Equation

Boltzmannian 
Electrons

Shown: Velocity Distribution Function (VDF)
   And Potential Profile 

Initial Condition
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Typical Simulation Result

Lightly Damped Case
Electron Temperature: 5 eV   |    (Te/Ti = 25)

Density Difference: 30%
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Typical Simulation Result

Lightly Damped Case
Electron Temperature: 5 eV   |    (Te/Ti = 25)

Density Difference: 30%
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Typical Simulation Result

Heavily Damped Case
Electron Temperature: 1.5 [eV]    |   (Te/Ti =7.5) 

Density Difference: 30%
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Typical Simulation Result

Heavily Damped Case
Electron Temperature: 1.5 [eV]    |   (Te/Ti =7.5) 

Density Difference: 30%
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Typical Simulation Result

Heavily Damped Case
Electron Temperature: 1.5 [eV]    |   (Te/Ti =7.5) 

Density Difference: 30%
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Model Verification

   Comparison with Linearized Solution

– Evolution of the First Ripple Wavelength:

• Simulated weak shocks (1% jump) for different temperature ratios.

• Greater ion reflection at lower electron temperature alters the first ripple.

• Agreement improves with hot electrons, as ion reflection decreases.
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Model Verification

   Comparison with Linearized Solution

– Evolution of the First Ripple Wavelength:

• Stronger shocks (4%) show poorer agreement at lower electron temperature.

• Stronger shocks reflect more ions, causing stronger dissipation.

• Agreement with linearized model improves with electron temperature.
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Model Verification

   Comparison with Linearized Solution

– Trailing Ripple Wavelengths:

• Subsequent wave train ripples diverge from the model.

• Simulated ripples do not approach zero wavelength like the linearized model.
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Results on Shock Structure

   Other Weak Shock Results

– Shock Mach Number:

• For the same density jump (1% here),

– Shock speed increases with electron temperature, Mach number decreases.

• The first wave train oscillation peak travels less quickly than the shock ramp.
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Results on Shock Structure

   Other Weak Shock Results

– Shock Mach Number:

• The same trends are apparent for slightly stronger shocks (4% jump here).

• Ion reflection appears to damp the shock acceleration.
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Model Validation

   Validation Comparisons

– The Wave Train:

• Simulation suggests ripples should occur for:

– Moderate Mach numbers (~1.2 – ~1.6)
– High electron-ion temperature ratio (>10)

– Wave Train Wavelength

– Shock-Front Mach Number

– Reflected Ion Beam Velocity

   Gathering Experiment Data

– Double Plasma Device:

• Can produce low Mach number collisionless shocks.

– Diagnostics:

• Langmuir probes; density and electron temperature.

– Shock speed, and density at fixed position.

• Ion temperature is necessary for proper validation.

Density

Thruster
Time

Probe at 
Fixed Position

Density

Position

Simulation

Experiment
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   Towards Validation and Extension

   Towards Validation of Collisionless Model

– Verification:

• Simulated weak shocks agree with the linearized cold-ion solution.

– Validation:

• Results should be compared to experimental shock data.

• Inconsistencies in published 1969 double-plasma device data hampered validation.

   Future Work: Extension to Moderately Collisional Problem

– Collision Operators:

• Presence of a few mean collisions in shock transition invalidates Vlasov equation.

• The collisional ion-acoustic shock requires the full Boltzmann equation with
appropriate choice of collision operator.

• Moderately collisional shocks should be hybrid dispersive-dissipative shocks.

– Validation of Collision Algorithms:

• Tuning parameters in a shock experiment can yield moderately collisional data.
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Back Up Slides
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Results on Shock Structure

   Example of Shock Speed at 1%
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Details on Shock Structure

   Wave Train Properties

– Sagdeev Pseudopotential:

• An analogy to motion in a potential well, describes oscillations in wave train.

• Dissipation within the well leads potential to settle at the minimum.
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Electric Field Details
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